2 D Quantum Gravity , Matrix Models and Graph Combinatorics

نویسنده

  • P. Di Francesco
چکیده

Lectures given at the summer school " Applications of random matrices in physics " , Les Houches, June 2004.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Gravity , Matrix Models and Graph Combinatorics

Lectures given at the summer school " Applications of random matrices in physics " , Les Houches, June 2004.

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Matrix Integrals and Map Enumeration: An Accessible Introduction

Physicists working in two-dimensional quantum gravity invented a new method of map enumeration based on computation of Gaussian integrals over the space of Hermitian matrices. This paper explains the basic facts of the method and provides an accessible introduction to the subject. Keywords-Maps, Imbedded graphs, Enumerative combinatorics, Matrix integrals, Quantum field theory, String theory.

متن کامل

Enumeration of maps

This chapter is devoted to the connection between random matrices and maps, i.e graphs drawn on surfaces. We concentrate on the one-matrix model and explain how it encodes and allows to solve a map enumeration problem. Maps are fundamental objects in combinatorics and graph theory, originally introduced by Tutte in his series of " census " papers [Tut62a, Tut62b, Tut62c, Tut63]. Their connectio...

متن کامل

Fermionic Quantum Gravity

We study the statistical mechanics of random surfaces generated by N × N onematrix integrals over anti-commuting variables. These Grassmann-valued matrix models are shown to be equivalent to N ×N unitary versions of generalized Penner matrix models. We explicitly solve for the combinatorics of ’t Hooft diagrams of the matrix integral and develop an orthogonal polynomial formulation of the stati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006